TUTORIAL-04: SHELL TARGETING

Based on Lecture-15: Shell Targeting -1st Part

Problem 1: Compute the number of shells targeted for the stream data shown in Table 1.

Given: Hot utility temperature range: 400 to 399°C

Cold utility temperature range: 10 to 15°C

 $\Delta T_{min} = 10^{\circ}C$

Stream	Supply temperature (⁰ C)	Target temperature (⁰ C)	Heat capacity flow rate (kW ⁰ C ⁻¹)
HOT (H1)	290	70	28
HOT (H2)	190	30	40
COLD (C1)	50	190	38
COLD (C2)	150	290	60

Table 1: Stream data for Problem 1

Solution 1: The amount of hot and cold utilities and the pinch temperature are required to target number of shells. These values are computed using Problem Table Algorithm as described in Problem 1 of Tutorial-02 and shown below:

Minimum hot utility: 5080 kW

Minimum cold utility: 3920 kW

Pinch temperature: 155°C

Hot pinch temperature: 160°C

Cold pinch temperature: 150°C

To compute the data for balanced hot composite curve (BHCC), temperatures and CP values of hot streams (H1, H2), shown in Table 1, and Hot utility (HU) are considered. The detailed computation for BHCC is shown in Table 2. Similarly, data of balanced cold composite curve (BCCC) is computed and presented in Table 3.

Temperature						Cum CP	$Q_h = \Delta T^* cur$	m Cum Q _h
(°C)		C	P=40)		$(kW^{0}C^{-1})$	CP (kW)	(kW)
30			Î			0	0	0
	CP:	=28						
70						40	1600	1600
190						68	8160	9760
290		H	[2	CD	-	28	2800	12560
				CP=	5080			
399	H E	[1			1	0	0	12560
400						5080	5080	17640
				I	HU			

Table 2: Data for BHCC

Table 3: Data for BCCC

Temperature				Cum CP	$Q_c = \Delta T^* cum CP$	Cum Q _c	
(°C)	CU		$(kW^{0}C^{-1})$	(kW)	(kW)		
10					0	0	0
15		С	1		784	3920	3920
50	CP=7	84	0	2	0	0	3920
150					38	3800	7720
190					98	3920	11640
290		CP	=38		60	6000	17640
			СР	=60			

Data of BHCC and BCCC are plotted in Figure 1 using Cum Q_h and Cum Q_c of Table 2 and 3, respectively. Further, cumulative enthalpies at different temperature intervals along with known interval temperatures of BHCC and BCCC are presented in Table 4. In this table the cumulative enthalpies are also shown where unknown temperatures of BHCC and BCCC are available.

Figure 1: Balanced hot and cold composite curves

Enthalpy	Cum	$Th_i (^{o}C)$	BHCC	$Tc_i(^{o}C)$	BCCC	Cum CP
interval no	enthalpy		temperature		temperature	(kW/°C)
	(kW)					
	0	30	Th ₁	10	Tc ₁	0
1	1600	70	Th ₂	Unknown	Tc ₂	40
2	3920	Unknown	Th ₃	15	Tc ₃	784
3	3920	Unknown	Th ₄	50	Tc ₄	0
4	7720	Unknown	Th ₅	150	Tc ₅	38
5	9760	190	Th ₆	Unknown	Tc ₆	68
6	11640	Unknown	Th ₇	190	Tc ₇	98
7	12560	290	Th ₈	Unknown	Tc ₈	28
8	12560	399	Th ₉	Unknown	Tc ₉	0
9	17640	400	Th ₁₀	290	Tc ₁₀	60

Table 4: Calculation of unknown temperatures of BHCC and BCCC

Now, the unknown temperatures of BHCC and BCCC in each enthalpy interval are computed as described for Problem 1 of Tutorial-03 and shown below:

The values of all temperatures of BHCC and BCCC are shown in Table 5. Further, calculation of number of shells is carried out, which requires following equations:

$$P = \left(\frac{T_1 - T_2}{T_1 - t_1}\right) \tag{1}$$

$$R = \left(\frac{t_2 - t_1}{T_1 - T_2}\right) \tag{2}$$

$$P_{12} = X_P * P_{MAX} \tag{3}$$

$$P_{MAX} = \left[\frac{2}{(R+1) + (R^2 + 1)^{1/2}}\right] \tag{4}$$

if R = 1:

$$S = \frac{\left[\frac{P}{(1-P)}\right]}{\frac{P_{12}}{(1-P_{12})}}$$
(5)

Else –

$$S = \frac{\ln\left[\frac{(1-RP)}{(1-P)}\right]}{\ln\left[\frac{(1-RP_{12})}{(1-P_{12})}\right]}$$
(6)

No of shell =
$$S * (N - 1)$$
 (7)

Where, N is the number of streams

Calculation of the number of shells for first enthalpy interval is carried out as:

Eq. 1 is used to calculate P where T_1 , T_2 and t_1 are considered as 70, 30 and 10, respectively. These values are taken from Table 5 for interval no. 1.

$$P = \frac{(70 - 30)}{(70 - 10)} = 0.667$$

Value of R is computed using Eq. 2 where T_1 , T_2 , t_1 , and t_2 are considered as 70, 30, 10 and 12, respectively, from interval no. 1 as shown in Table 5.

$$R = \frac{(12 - 10)}{70 - 30} = 0.05$$

Eq. 4 is used to calculate P_{max} , where R = 0.05

$$P_{max} = \frac{2}{\left(0.05+1\right) + \left(0.05^2+1\right)^{1/2}} = 0.9750$$

 P_{12} is predicted using Eq. 3 where X_P is considered as 0.9.

$$P_{12} = 0.9*0.9750 = 0.8775$$

As $R \neq 1$, Eq. 6 is used to calculate S, where R and P are taken as 0.05 and 0.667, respectively. Thus,

$$S = \frac{ln \left[\frac{(1-0.05*0.667)}{(1-0.667)}\right]}{ln \left[\frac{(1-0.05*0.8775)}{1-0.8775}\right]} = 0.5186$$

N is the number of streams lying in the corresponding enthalpy interval. For interval no. 1, N is 2 as shown in Table 5. Thus, the number of shells for this interval is computed as

No of shell =
$$S * (N - 1) = 0.5186 (2-1) = 0.5186$$

The overall calculation for the shells is presented in Table 5.

Enthalpy	Enthalpy	$T_h(^{o}C)$	$T_{c}(^{o}C)$	Р	R	P ₁₂	S	Ν	S(N-1)
interval	(kW)								
no.									
0	0	30	10	-	-	-	-	-	-
1	1600	70	12	0.667	0.05	0.8775	0.5186	2	0.5186
2	3920	104.12	15	0.37	0.0879	0.86	0.2273	3	0.4546
3	3920	104.12	50	0	-	-	-	-	-
4	7720	160	150	0.508	1.7895	0.3719	2.679	3	5.358
5	9760	190	170.82	0.75	0.694	0.6183	1.6178	4	4.8534
6	11640	257.14	190	0.778	0.2857	0.7739	1.0136	3	2.0272
7	12560	290	205.33	0.3286	0.4665	0.70	0.2869	2	0.2869
8	12560	399	205.33	0.5628	-	-	-	-	-
9	17640	400	290	5.14e-03	84.67	0.01056	0.2533	2	0.2533

Table 5: Calculation of the number of shells

As hot and cold pinch temperatures are 160°C and 150°C, So

No. of shells below the pinch is $\approx 7 (0.5186+0.4546+5.358=6.3312)$ (from interval 0 to 4)

No. of shells above the pinch is $\approx 8 (4.8534+2.0272+0.2869+0.2533=7.4208)$ (from interval 5 to 9)

Thus, the total no. of shells = No. of shells above the pinch+ No. of shells below the pinch

$$= 8 + 7 = 15$$

Problem 2: Compute the number of shells required for the given data in Table 6. For this problem the value of ΔT_{min} is 10°C.

Streams	Supply temperature $(^{\circ}C)$	Target	Heat capacity
HOT (H1)	170	65	25
HOT (H2)	230	50	35
COLD (C1)	35	225	32
COLD (C2)	125	305	22
COLD UTILITY(CU)	30	40	
HOT UTILITY (HU)	325	324	

Table 6: Stream data for Problem 2

Solution 2: The amount of hot and cold utilities and the pinch temperature are required to target number of shells, which are computed using Problem Table Algorithm as described in Problem 1 of Tutorial-03 and shown below:

Amount of hot utility: 3170 kW

Amount of cold utility: 2055 kW

Pinch temperature: 165°C

Hot pinch temperature : 170°C

Cold pinch temperature : 160°C

CP of hot utility : $3170/(325-324) = 3170 \text{ kW.}^{\circ}\text{C}^{-1}$

CP of cold utility : $2055/(40-30) = 205.5 \text{ kW.}^{\circ}\text{C}^{-1}$

The computation for BHCC and BCCC are shown in Table 7 and 8, respectively.

Table 7: Data for BHC	CC
-----------------------	----

Temperature				Cum CP	$Q_h = cum$	Cum Q _h
(°C)	3	5		$(kW.^{\circ}C^{-1})$	CP*ΔT (kW)	(kW)
50	25			0	0	0
65				35	525	525
170				60	6300	6825
230	H1	31	70	35	2100	8925
324	Н	12		0	0	8925
325				3170	3170	12095
		Н	π			

Table 8: Data for BCCC

Temperature			F		Cum CP	$Q_{C} = cum CP^{*}$	Cum Q _C
(°C)				CU	$(kW.^{o}C^{-1})$	$\Delta T (kW)$	(kW)
30	С	1			0	0	0
35					205.5	1027.5	1027.5
40		0	2	The second secon	237.5	1187.5	2215
125				205.5	32	2720	4935
225					54	5400	10335
305	32	2			22	1760	12095
	•		22		•		

Data of BHCC and BCCC are plotted in Figure 2 using Cum Q_h and Cum Q_c of Table 7 and 8, respectively. Further, cumulative enthalpies at different temperature intervals along with known interval temperatures of BHCC and BCCC are presented in Table 9. The unknown temperatures in each enthalpy interval of Table 9 are computed as described for Problem 1 of Tutorial-03. The values of all temperatures of BHCC and BCCC are shown in Table 10.

Figure 2: Graphical representation of balanced hot and cold composite curve

Enthalpy interval number	Cum enthalpy (kW)	T _{HI} (°C)	BHCC temperature	$T_{CI}(^{o}C)$	BCCC temperature	Cum CP (kW/°C)
0	0	50	T _{H1}	30	T _{C1}	0
1	525	65	T _{H2}	Unknown	T _{C2}	35
2	1027.5	Unknown	T _{H3}	35	T _{C3}	205.5
3	2215	Unknown	T _{H4}	40	T _{C4}	237.5
4	4935	Unknown	T _{H5}	125	T _{C5}	32
5	6825	170	T _{H6}	Unknown	T _{C6}	60
6	8925	230	T _{H7}	Unknown	T _{C7}	35
7	8925	324	T _{H8}	Unknown	T _{C8}	0

Table 9: Calculation of unknown temperatures of balanced hot and cold composite curve

8	10335	Unknown	T _{H9}	225	T _{C9}	54
9	12095	325	T _{H10}	305	T _{C10}	3170

Further, calculation of number of shell is carried out using Eq. 1 to 7 as described for Problem 1. The overall calculation for shell targeting is presented in Table 10.

Enthalpy interval no.	Enthalpy (kW)	Т _Н (°С)	T _C (°C)	Р	R	P ₁₂	S	NI	S(N _I - 1)
0	0	50	30	-	-	-	-	-	-
1	525	65	32.55	0.428	0.17	0.824	0.3045	2	0.3045
2	1027.5	73.375	35	0.205	0.2925	0.77	0.1375	3	0.275
3	2215	93.167	40	0.3403	0.2526	0.788	0.2453	4	0.7359
4	4935	138.5	125	0.46	1.875	0.36	2.0187	3	4.0374
5	6825	170	160	0.7	1.11	0.499	2.556	4	7.668
6	8925	230	198.89	0.857	0.648	0.6339	2.3838	3	4.7676
7	8925	324	198.89	0.7513	-	-	-	-	-
8	10335	324.45	225	3.58e-03	58.022	0.0154	0.1031	3	0.2062
9	12095	325	305	5.5e-03	145.45	6.166e-03	0.7079	2	0.7079

Table 10: Computation of number of shells

As the hot pinch temperature is 170°C and the cold pinch temperature is 160°C, so

No. of shells below the pinch $\approx 13(0.3045+0.275+0.7359+4.0374+7.668 = 13.208)$ (from interval 0 to 5)

No. of shells above the pinch $\approx 6 (4.7676+0.2062+0.7079 = 5.6817)$ (from interval 6 to 9)

So, the total no. of shells are = No of shells above the pinch+ No of shells below the pinch

= 13 + 6 = 19