TUTORIAL-04: SHELL TARGETING

Based on Lecture-15: Shell Targeting - $\mathbf{1}^{\text {st }}$ Part

Problem 1: Compute the number of shells targeted for the stream data shown in Table 1.
Given: Hot utility temperature range: 400 to $399^{\circ} \mathrm{C}$
Cold utility temperature range: 10 to $15^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{\text {min }}=10^{\circ} \mathrm{C}$
Table 1: Stream data for Problem 1

Stream	Supply temperature $\left({ }^{\circ} \mathrm{C}\right)$	Target temperature $\left({ }^{\circ} \mathrm{C}\right)$	Heat capacity flow rate $\left(\mathrm{kW}^{0} \mathrm{C}^{-1}\right)$
HOT (H1)	290	70	28
HOT (H2)	190	30	40
COLD (C1)	50	190	38
COLD (C2)	150	290	60

Solution 1: The amount of hot and cold utilities and the pinch temperature are required to target number of shells. These values are computed using Problem Table Algorithm as described in Problem 1 of Tutorial-02 and shown below:

Minimum hot utility: 5080 kW
Minimum cold utility: 3920 kW
Pinch temperature: $155^{\circ} \mathrm{C}$
Hot pinch temperature: $160^{\circ} \mathrm{C}$
Cold pinch temperature: $150^{\circ} \mathrm{C}$
To compute the data for balanced hot composite curve (BHCC), temperatures and CP values of hot streams (H1, H2), shown in Table 1, and Hot utility (HU) are considered. The detailed computation for BHCC is shown in Table 2. Similarly, data of balanced cold composite curve (BCCC) is computed and presented in Table 3.

Table 2: Data for BHCC

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{CP}=40$		$\begin{aligned} & \text { Cum CP } \\ & \left(\mathrm{kW}^{0} \mathrm{C}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{h}}=\Delta \mathrm{T}^{*} \mathrm{cum} \\ & \mathrm{CP}(\mathrm{~kW}) \end{aligned}$	$\begin{array}{\|l} \hline \operatorname{Cum~}_{(\mathrm{kW})} \mathrm{Q}_{\mathrm{h}} \\ \hline \end{array}$
30	$\mathrm{CP}=28$		0	0	0
70	4		40	1600	1600
190			68	8160	9760
290	H2	$\mathrm{CP}=5080$	28	2800	12560
399	H1		0	0	12560
400			5080	5080	17640

Table 3: Data for BCCC

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	CU	$\begin{array}{\|l\|} \hline \operatorname{Cum~CP}_{\left(\mathrm{kW}^{0} \mathrm{C}^{-1}\right)} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{c}}=\Delta \mathrm{T}^{*} \text { cum } \mathrm{CP} \\ & (\mathrm{~kW}) \end{aligned}$	$\begin{aligned} & \mathrm{Cum} \mathrm{Q}_{\mathrm{c}} \\ & (\mathrm{~kW}) \end{aligned}$
10		0	0	0
15		784	3920	3920
50	CP=784 C 2	0	0	3920
150		38	3800	7720
190		98	3920	11640
290	CP=38	60	6000	17640

Data of BHCC and BCCC are plotted in Figure 1 using Cum Q_{h} and $\operatorname{Cum} \mathrm{Q}_{\mathrm{c}}$ of Table 2 and 3, respectively. Further, cumulative enthalpies at different temperature intervals along with known interval temperatures of BHCC and BCCC are presented in Table 4. In this table the cumulative enthalpies are also shown where unknown temperatures of BHCC and BCCC are available.

Figure 1: Balanced hot and cold composite curves
Table 4: Calculation of unknown temperatures of BHCC and BCCC

Enthalpy interval no	Cum enthalpy (kW)	$\mathrm{Th}_{\mathrm{i}}\left({ }^{\circ} \mathrm{C}\right)$	BHCC temperature	$\mathrm{Tc}_{\mathrm{i}}\left({ }^{\circ} \mathrm{C}\right)$	BCCC temperature	Cum CP $\left(\mathrm{kW} /{ }^{\circ} \mathrm{C}\right)$
1	0	30	Th_{1}	10	Tc_{1}	0
2	3920	Unknown	Th_{3}	15	Tc_{3}	784
3	3920	Unknown	Th_{4}	50	Tc_{4}	0
4	7720	Unknown	Th_{5}	150	Tc_{5}	38
5	9760	190	Th_{6}	Unknown	Tc_{6}	68
6	11640	Unknown	Th_{7}	190	Tc_{7}	98
7	12560	290	Th_{8}	Unknown	Tc_{8}	28
8	12560	399	Th_{9}	Unknown	Tc_{9}	0
9	17640	400	Th_{10}	290	Tc_{10}	60

Now, the unknown temperatures of BHCC and BCCC in each enthalpy interval are computed as described for Problem 1 of Tutorial-03 and shown below:
$\mathrm{Th}_{3}=104.12^{\circ} \mathrm{C}$
$\mathrm{Th}_{4}=104.12^{\circ} \mathrm{C}$
$\mathrm{Th}_{5}=160^{\circ} \mathrm{C}$
$\mathrm{Th}_{7}=257.14^{\circ} \mathrm{C}$
$\mathrm{Tc}_{2}=12^{\circ} \mathrm{C}$
$\mathrm{Tc}_{6}=170.82$
$\mathrm{Tc}_{8}=205.33^{\circ} \mathrm{C}$
$\mathrm{Tc}_{9}=205.33^{\circ} \mathrm{C}$
The values of all temperatures of BHCC and BCCC are shown in Table 5. Further, calculation of number of shells is carried out, which requires following equations:
$P=\left(\frac{T_{1}-T_{2}}{T_{1}-t_{1}}\right)$
$R=\left(\frac{t_{2}-t_{1}}{T_{1}-T_{2}}\right)$
$P_{12}=X_{P} * P_{M A X}$
$P_{M A X}=\left[\frac{2}{(R+1)+\left(R^{2}+1\right)^{1 / 2}}\right]$
if $\mathrm{R}=1$:
$S=\frac{[P /(1-P)]}{P_{12} /\left(1-P_{12}\right)}$
Else -
$S=\frac{\ln \left[\frac{(1-R P)}{(1-P)}\right]}{\ln \left[\frac{\left.1-R P_{12}\right)}{\left(1-P_{12}\right)}\right]}$
No of shell $=S *(N-1)$
Where, N is the number of streams
Calculation of the number of shells for first enthalpy interval is carried out as:
Eq. 1 is used to calculate P where T_{1}, T_{2} and t_{1} are considered as 70,30 and 10 , respectively. These values are taken from Table 5 for interval no. 1 .
$P=\frac{(70-30)}{(70-10)}=0.667$
Value of R is computed using Eq. 2 where $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{t}_{1}$, and t_{2} are considered as 70, 30, 10 and 12, respectively, from interval no. 1 as shown in Table 5.
$R=\frac{(12-10)}{70-30)}=0.05$
Eq. 4 is used to calculate $\mathrm{P}_{\text {max }}$, where $\mathrm{R}=0.05$
$P_{\max }=\frac{2}{(0.05+1)+\left(0.05^{2}+1\right)^{1 / 2}}=0.9750$
P_{12} is predicted using Eq. 3 where X_{P} is considered as 0.9.
$\mathrm{P}_{12}=0.9 * 0.9750=0.8775$
As $\mathrm{R} \neq 1$, Eq. 6 is used to calculate S , where R and P are taken as 0.05 and 0.667 , respectively. Thus,
$S=\frac{\ln \left[\frac{(1-0.05 * 0.667)}{(1-0.667)}\right]}{\ln \left[\frac{(1-0.05 * 0.8775)}{1-0.8775}\right]}=0.5186$
N is the number of streams lying in the corresponding enthalpy interval. For interval no. 1, N is 2 as shown in Table 5. Thus, the number of shells for this interval is computed as

No of shell $=S *(N-1)=0.5186(2-1)=0.5186$
The overall calculation for the shells is presented in Table 5.

Table 5: Calculation of the number of shells

Enthalpy interval no.	Enthalpy (kW)	$\mathrm{T}_{\mathrm{h}}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	P	R	P_{12}	S	N	$\mathrm{~S}(\mathrm{~N}-1)$
0	0	30	10	-	-	-	-	-	-
1	1600	70	12	0.667	0.05	0.8775	0.5186	2	0.5186
2	3920	104.12	15	0.37	0.0879	0.86	0.2273	3	0.4546
3	3920	104.12	50	0	-	-	-	-	-
4	7720	160	150	0.508	1.7895	0.3719	2.679	3	5.358
5	9760	190	170.82	0.75	0.694	0.6183	1.6178	4	4.8534
6	11640	257.14	190	0.778	0.2857	0.7739	1.0136	3	2.0272
7	12560	290	205.33	0.3286	0.4665	0.70	0.2869	2	0.2869
8	12560	399	205.33	0.5628	-	-	-	-	-
9	17640	400	290	$5.14 \mathrm{e}-03$	84.67	0.01056	0.2533	2	0.2533

As hot and cold pinch temperatures are $160^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$, So
No. of shells below the pinch is $\approx 7(0.5186+0.4546+5.358=6.3312)($ from interval 0 to 4$)$
No. of shells above the pinch is $\approx 8(4.8534+2.0272+0.2869+0.2533=7.4208)$ (from interval 5 to 9)

Thus, the total no. of shells $=$ No. of shells above the pinch + No. of shells below the pinch

$$
=8+7=15
$$

Problem 2: Compute the number of shells required for the given data in Table 6. For this problem the value of $\Delta \mathrm{T}_{\text {min }}$ is $10^{\circ} \mathrm{C}$.

Table 6: Stream data for Problem 2

Streams	Supply temperature $\left({ }^{\circ} \mathrm{C}\right)$	Target temperature $\left({ }^{\circ} \mathrm{C}\right)$	Heat capacity $\mathrm{kW}{ }^{\circ} \mathrm{C}^{-1}$
HOT (H1)	170	65	25
HOT (H2)	230	50	35
COLD (C1)	35	225	32
COLD (C2)	125	305	22
COLD UTILITY(CU)	30	324	
HOT UTILITY (HU)	325		

Solution 2: The amount of hot and cold utilities and the pinch temperature are required to target number of shells, which are computed using Problem Table Algorithm as described in Problem 1 of Tutorial-03 and shown below:

Amount of hot utility : 3170 kW
Amount of cold utility : 2055 kW
Pinch temperature: $165^{\circ} \mathrm{C}$
Hot pinch temperature : $170^{\circ} \mathrm{C}$
Cold pinch temperature : $160^{\circ} \mathrm{C}$
CP of hot utility : $\quad 3170 /(325-324)=3170 \mathrm{~kW} .{ }^{\circ} \mathrm{C}^{-1}$
CP of cold utility : $\quad 2055 /(40-30)=205.5 \mathrm{~kW} .{ }^{\circ} \mathrm{C}^{-1}$
The computation for BHCC and BCCC are shown in Table 7 and 8, respectively.

Table 7: Data for BHCC

Table 8: Data for BCCC

Data of BHCC and BCCC are plotted in Figure 2 using Cum Q_{h} and $C u m \mathrm{Q}_{\mathrm{c}}$ of Table 7 and 8 , respectively. Further, cumulative enthalpies at different temperature intervals along with known interval temperatures of BHCC and BCCC are presented in Table 9. The unknown temperatures in each enthalpy interval of Table 9 are computed as described for Problem 1 of Tutorial-03. The values of all temperatures of BHCC and BCCC are shown in Table 10.

Figure 2: Graphical representation of balanced hot and cold composite curve

Table 9: Calculation of unknown temperatures of balanced hot and cold composite curve

Enthalpy interval number	Cum enthalpy (kW)	$\mathrm{T}_{\mathrm{HI}}\left({ }^{\circ} \mathrm{C}\right)$	BHCC temperature	$\mathrm{T}_{\mathrm{CI}}\left({ }^{\circ} \mathrm{C}\right)$	BCCC temperature	Cum CP $\left(\mathrm{kW} /{ }^{\circ} \mathrm{C}\right)$
0	0	50	$\mathrm{~T}_{\mathrm{H} 1}$	30	$\mathrm{~T}_{\mathrm{C} 1}$	0
1	525	65	$\mathrm{~T}_{\mathrm{H} 2}$	Unknown	$\mathrm{T}_{\mathrm{C} 2}$	35
2	1027.5	Unknown	$\mathrm{T}_{\mathrm{H} 3}$	35	$\mathrm{~T}_{\mathrm{C} 3}$	205.5
3	2215	Unknown	$\mathrm{T}_{\mathrm{H} 4}$	40	$\mathrm{~T}_{\mathrm{C} 4}$	237.5
4	4935	Unknown	$\mathrm{T}_{\mathrm{H} 5}$	125	$\mathrm{~T}_{\mathrm{C} 5}$	32
5	6825	170	$\mathrm{~T}_{\mathrm{H} 6}$	Unknown	$\mathrm{T}_{\mathrm{C} 6}$	60
6	8925	230	$\mathrm{~T}_{\mathrm{H} 7}$	Unknown	$\mathrm{T}_{\mathrm{C} 7}$	35
7	8925	324	$\mathrm{~T}_{\mathrm{H} 8}$	Unknown	$\mathrm{T}_{\mathrm{C} 8}$	0

8	10335	Unknown	$\mathrm{T}_{\mathrm{H} 9}$	225	$\mathrm{~T}_{\mathrm{C} 9}$	54
9	12095	325	$\mathrm{~T}_{\mathrm{H} 10}$	305	$\mathrm{~T}_{\mathrm{C} 10}$	3170

Further, calculation of number of shell is carried out using Eq. 1 to 7 as described for Problem 1. The overall calculation for shell targeting is presented in Table 10.

Table 10: Computation of number of shells

Enthalpy interval no.	Enthalpy (kW)	T_{H} $\left({ }^{\circ} \mathrm{C}\right)$	T_{C} $\left({ }^{\circ} \mathrm{C}\right)$	P	R	P_{12}	S	$\mathrm{~N}_{\mathrm{I}}$	$\mathrm{S}\left(\mathrm{N}_{\mathrm{I}}-1\right)$
0	0	50	30	-	-	-	-	-	-
1	525	65	32.55	0.428	0.17	0.824	0.3045	2	0.3045
2	1027.5	73.375	35	0.205	0.2925	0.77	0.1375	3	0.275
3	2215	93.167	40	0.3403	0.2526	0.788	0.2453	4	0.7359
4	4935	138.5	125	0.46	1.875	0.36	2.0187	3	4.0374
5	6825	170	160	0.7	1.11	0.499	2.556	4	7.668
6	8925	230	198.89	0.857	0.648	0.6339	2.3838	3	4.7676
7	8925	324	198.89	0.7513	-	-	-	-	-
8	10335	324.45	225	$3.58 \mathrm{e}-03$	58.022	0.0154	0.1031	3	0.2062
9	12095	325	305	$5.5 \mathrm{e}-03$	145.45	$6.166 \mathrm{e}-03$	0.7079	2	0.7079

As the hot pinch temperature is $170^{\circ} \mathrm{C}$ and the cold pinch temperature is $160^{\circ} \mathrm{C}$, so
No. of shells below the pinch $\approx 13(0.3045+0.275+0.7359+4.0374+7.668=13.208)$ (from interval 0 to 5)

No. of shells above the pinch $\approx 6(4.7676+0.2062+0.7079=5.6817)($ from interval 6 to 9$)$
So, the total no. of shells are $=$ No of shells above the pinch + No of shells below the pinch

$$
=13+6=19
$$

